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Abstract—Knowledge discovery and data correlation 
require a unified approach to basic data management. 
However, achieving such an approach is nearly impossible 
with hundreds of disparate data sources, legacy systems and 
data formats. This problem is pervasive in the space science  
community where data models, taxonomies and data 
management systems are locally implemented and limited 
metadata has been collected and organized. Technology 
developed by the Object Oriented Data Technology 
(OODT) task at NASA's Jet Propulsion Laboratory (JPL) 
has been exploring component frameworks for managing, 
locating and exchanging data residing within a 
geographically distributed network.  OODT has taken a 
novel approach towards solving this problem by exploiting 
web technologie s usually dedicated to e -commerce, 
combined with a rich, metadata-based environment. The 
components developed by OODT create a set of distributed 
peer-to-peer services that allow for data managed by a peer 
to be searched and returned as part of an integrated data 
management system.  This paper discusses the approach 
taken to develop a software framework, and two prototype 
development efforts for the Planetary Data System (PDS) 
and the Mission and Ground Asset Database.1 
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1. INTRODUCTION 

The Object Oriented Data Technology (OODT) task, 
supported by the National Aeronautics and Space 
Administration (NASA) and implemented at the Jet 
Propulsion Laboratory (JPL), is focusing on developing a 
reference framework to support cross disciplinary solutions 
for data access, exchange and distribution of distributed data 
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to increase the collaboration and correlation of key 
engineering and science data produced throughout the 
lifecycle of a space mission. NASA is ambitiously planning 
to fly several new missions with an increasing amount of 
data planned for each mission.  Unfortunately, the data 
collected from cradle to grave of these missions tends to be 
difficult to locate, access, understand and  use limiting 
interoperability, software and data reuse, knowledge 
discovery and increasing mission costs.  As a result, OODT 
identified several key goals including (1) understanding 
where the data resources reside, (2) understanding how data 
is accessed in each system, (3) understanding the underlying 
data models for each system, and (4) building ubiquitous 
interfaces across multiple data systems that demonstrate 
interoperability using a common query mechanism.   In 
order to meet these challenging goals we  defined an 
architecture and a set of requirements.  The architecture 
defined a framework, services, and a reference information 
model that was tested against several projects including the 
Planetary Data System (PDS) and the Deep Space Network 
(DSN).  We based requirements on experience from these 
activities as well as interactions with several other efforts 
which support the overall objectives and culture of JPL and 
NASA.  The partnerships established by the OODT team to 
research solutions proved to be critical to meeting our goals, 
and allowed us to identify key data architectures that 
support the management and exchange of data in an era of 
ever-increasing disparate data sources. 

2. HISTORY AND PROGRAMMATIC GOALS 

In February 1998, JPL was funded by the Office of Space 
Science at NASA to perform research in object oriented and 
distributed data management technologies.  A principal goal 
of the OODT task is to explore and develop cutting-edge 
systems for the interoperability of scientific research, 
measurements, and data that span multiple disciplines.  
Given the amount of data generated by past unmanned deep 
space missions, and the predicted quantity of data that is 
planned for future missions, key information technology 
solutions need to be created that will enable the archiving 
and distribution of science data products residing in multiple 
data systems.  As a result, the focus of OODT has been to 
provide an architectural framework that includes software 
services for data archiving, data distribution, data location 
and data exchange.  The ability to correlate data across 
multiple missions, databases and data sets is dependent on 
having the data management infrastructure to allow the 



exchange of data.  Advances in technologies including the 
Extensible Markup Lang uage (XML) [1], metadata 
management, and distributed computing have allowed such 
an infrastructure to be a reality. 

Presently, space scientists cannot easily locate or use data 
across the hundreds of autonomous, heterogeneous and 
distributed data systems within the space science 
community.  The various platforms, data formats, data 
interpretations and Database Management Systems (DBMS) 
used make interoperability a difficult task.  Developing a 
ubiquitous computing environment across data systems is a 
difficult challenge given the independence of work groups 
and research activities at NASA.  Therefore, the architecture 
that we have defined allows each data system to be 
independently developed, however, the systems exchange 
data gi ven a messaging infrastructure that includes 
metadata2 descriptions associated with the messages.  The 
architecture is based on a directed graph (or digraph) of data 
systems that are traversed using a common query message 
implemented in XML in order to satisfy a query.  Profiles—
sets of resource definitions —describe nodes (or data 
systems) that are part of the digraph.  Profiles may point to 
other profiles thus representing arcs of the digraph.  A 
profile is essentially a metadata description of the resources 
known at a node in the distributed framework.  These 
resources can be definitions of data systems, or data 
products managed by a data system.  Both the service and 
information architecture will be defined in more detail later 
in the paper. 

As systems become more distributed, the need to integrate 
dissimilar systems increases.  A simple calculation yields 
that an organization with N number of systems could 
potentially identify the need to create (N2-N)/2 interfaces in 
order to share data between all of th ose systems.  As a 
result, the need to identify and support standards based 
interfaces increases as the number of distributed nodes in an 
organization increases.  One of the emerging solutions is 
peer-to-peer (P2P) architectures.  A P2P architecture is 
defined as “environment consist[ing] of computers with 
equal capabilities that share resources (such as processing 
power and memory), communicate exclusively with each 
other and do not connect to servers or central databases” [2].  
One of the key goals of OODT has been to provide the 
ability for data systems to become peers that provide 
services.  These services could distribute information such 
as science data, engineering data, navigation data or even 
contain computational capabi lities such as science 
processing algorithms or simulation environments.  The 
Internet has spawned several such capabilities including 
Napster for sharing music files.  It is important to note that 
while it is generally accepted that federating together data 
systems will increase the knowledge generated by 
correlating data captured in dispersed space science 
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databases, it is still unclear as to what the return on 
investment will yield.  Several initiatives at NASA are 
exploring that in addition to OODT including the National 
Virtual Observatory (NVO) which is attempting to build a 
federated environment for collaboration and research that 
integrates astrophysics and astronomy databases across the 
science community with a goal to “enable new science, 
more effective science, and more cost effective science” [3]. 
As a result, one of the activities outlined by NVO is to 
“[establish] a common systems approach to data pipelining, 
archiving, and retrieval that will ensure easy access by a 
large and diverse community of users and that will minimize 
costs and times to completion.” [3]  As these efforts 
continue one goal is clear: the need to have a generic, 
adaptable, scalable and extensible architecture with well 
defined interfaces that implement standards based protocols 
and a rich metadata infrastructure is an important key to 
unlocking interoperability across NASA. 

3. PEER SERVICES ARCHITECTURE 

OODT consists of a set of cooperating, distributed peer 
components.  Although its current incarnation is 
implemented with a client-server communications substrate, 
the design resembles a P2P network, and we have plans to 
transition the communications substrate to a P2P 
implementation shortly [4]. 

Distributed Framework 

OODT is a distributed system, wherein components may be 
geographically dispersed.  A standard Internet TCP/IP 
connection suffices to provide connectivity between 
components at this time.  In addition, we’ve architected the 
software as a plug-in system [5].  Rather than make OODT 
a set of utility APIs out of which each site develops its own 
applications, we create a set of classes and interfaces that 
sites customize and implement and then register with the 
OODT API.  Frameworks are easier to use because the 
framework classes and interfaces tell the developer exactly 
what needs to be implemented.  More work necessarily falls 
upon the framework developers. 

Within OODT there are three major components: 

§ Profile servers serve scientific metadata and can tell 
whether a particular resource can provide an answer to a 
query. 

§ Product servers  serve data products in a system -
independent format when presented with a product 
request. 

§ Query servers accept profile and product queries and 
traverse the network of profile and product servers, 
collecting results. 

The query server is the main entry point into the system, 
with Application Programmer’s Interface (API) for 



developers and a web interface for end users and testing.  In 
addition to these three servers, an archive server provides a 
metadata-capable data storage system for any kind of 
product that can be represented as a sequence of bytes (such 
as a file). 

Common Design Elements 

Profile and product servers, in addition to being distributed 
peer components, exhibit some common design elements.  
First, they all advertise a remotely accessible interface, 
callable via CORBA [6].  While clients may contact a 
profile or product server directly, we encourage them to use 
the query service which simulates the gateway to the P2P 
space.  Figure 1, a UML [7] deployment diagram, 
demonstrates a sample deployment of the OODT software.  
In that diagram, the query server has network connections to 
two profile and two product servers. 
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Figure 1 - Sample OODT Deployment 

Also, profile and product servers have run-time specified, 
replaceable backend processors.  A profile server may get 
its metadata from a flat file or a database by changing the 
backend.  Similarly, a product server may retrieve an image 
from the filesystem or from an image storage device with a 
customized backend.  Backend interfaces mandate the  
calling conventions for profile and product servers.  We 
achieve this run -time configuration through Java’s [8] 
interface and dynamic loading mechanisms; core product 
and profile servers refer only to abstract backend interfaces, 
while specific named classes implement those interfaces. 

Finally, profile and product servers all manipulate the same 
query structure.  This structure exists as an XML Document 
Type Definition and as a Java class, and it encapsulates the 
user’s query plus any results retrieved so far. 

Profile Server 

The profile server’s job is to serve profiles [9], which are 
XML -representable metadata descriptions of resources.  A 
resource in this context may be a single data granule, a 
dataset (a collection of granules), a collection of datasets, a 

data dictionary, anything with a Uniform Resource 
Identifier (URI) [10], such as a URL, or other profiles in 
other profile servers.  A profile “profiles” a resource b y 
describing data elements it contains, what data dictionary 
defines those elements, who created it, when, in what 
language, under what subject headings, and so forth.  
Section 4 describes the profile information model 
completely. 

Responsibilities—The primary responsibility of a profile 
server is to accept a query and determine if any of the 
profiles it manages profile resources that could satisfy that 
query.  Each profile server accepts the query and delegates 
to a backend implementation to search the set of managed 
profiles and return any that match.  Figure 2 depicts the 
class architecture in a UML diagram. 
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Figure 2 - Profile Service Class Architecture 

Although users can contact a specific profile server directly 
through its CORBA interface,  they typically use the query 
service instead.  We bootstrap the query server with a “root” 
profile server whose set of managed profiles refer to other 
profile servers.  Those other profile servers may in turn refer 
to yet more profile servers, forming a directed acyclic graph 
of servers.  The query server can crawl this graph 
(eliminating redundant cyclic queries) and gather results 
from the entire network.  In Figure 1, the query server runs 
both the query server and the root profile server; the root 
profile server contains two profiles that refer to the 
document profile server and the data profile server.  The 
document profile server describes URLs in the document 
repository, and the data profile server describes the image 
and table product servers. 

Besides searching a set of profiles, each profile server has 
secondary responsibilities to manage its set of profiles.  The 
management interface includes typical set operations such 
as adding, modifying, and deleting profiles. 

Current Backends—The profile server’s plug-in architecture 
has enabled us to design and experiment with several 
backend implementations for querying and managing 
profiles.  Because profiles can be represented in XML, our 
original implementation would store each profile in memory 
as an XML Document Object Model (DOM) tree, and 
search by traversing the tree. 

Another implementation uses an Oracle relational database, 
essentially transforming the DOM tree into a series of 



database tables.  This backend transforms the user’s query 
into SQL and uses a stored procedure to retrieve matching 
profiles in XML format. 

Highly specific applications of profiles are possible, too.  At 
JPL, Xerox’s DocuShare [11] product manages large 
collections of documentation.  A profile server backend that 
uses DocuShare’s WebDAV-like interface [12] enables a 
single query to span multiple DocuSh are and other 
documentation management systems, enhancing knowledge 
sharing.  In this backend, profiles of resources are built on-
the-fly by assembling information from the documentation 
management system. 

Product Server 

Product servers exist to provide an interface to retrieving 
specific scientific data products.  Like profile servers, 
product servers accept the query structure mentioned earlier 
and described in Section 4.  Instead of adding profiles to the 
results section of the query structure, they add actual data 
products.  Data products in this sense may be individual 
granules, datasets, or collections of datasets, depending on 
the backend implementation to which the product server 
delegates its query requests. 

As with profile servers, product servers delegate requests for 
products to a specific backend implementation.  The 
backend’s job is to act as the translator between a system-
dependent product storage system and the system -
independent OODT framework.  It accepts a quer y, 
transforms it into a format required by the product storage 
system, retrieves the product, transforms it into a system-
independent format, and adds it to the query structure.  
Figure 3 shows the class architecture. 
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Figure 3 - Product Service Class Architecture 

The query handler interface for product servers is far 
simpler than the profile server interface for profile servers.  
There is a single method that the backend must implement 
that accepts the generic query structure and returns it with or 
without matching products installed. 

Typical Operation—Users usually won’t know ahead of 
time what product servers exists and by what network 
names they’re known.  Likewise, the query server does not 
know what product servers are available either —it’s 
bootstrapped with only a single profile server, the “root” 
profile server.  Some profile servers in the network must 

contain matching profiles that describe product servers that 
can answer a request for data. 

As a result, querying is a two step process, depicted in the 
UML interaction diagram in Figure 4.  First, the user issues 
a profile query for the desired data.  The query service 
crawls through the network of profile servers and returns 
any matching profiles.  The user then selects a product 
server from the matching set and reissues the query as a 
product query directed at a specific server.  The query 
service contacts the product server, which retrieves the 
product. 

 

Query Root 
Profile 

Data 
Profile 

Prod 
Svr 

 

Figure 4 - Retrieving a Product 

Product Formats—As mentioned, one of the responsibilities 
of the backend query handler for a product server is to 
translate products from system-dependent to a syste m-
independent format.  These system-independent formats are 
any that can be encoded with an Internet MIME type [13].  
The query structure’s results section includes the MIME 
type of the product.  For example, a product server t hat 
retrieves images from a database in a proprietary format 
may choose to return them in either the image/jpeg or 
image/png MIME formats.  A tabular product might be in 
the text/tab-separated-values format. 

The OODT framework provides an automated mechanism 
to encoded the product itself based on the MIME type.  
Because the query structure is serialized into XML between 
peer components, the framework encodes certain MIME 
types to be compatible with XML’s string representation.  
For example, the framework encodes a text/tab-separated-
values product into an XML CDATA section.  It encodes 
binary products like image/gif or application/ms-word into 
the base-64 textual format [13]. 

Users have some control over what format product servers 
return products to them.  Part of the query structure includes 
a list of acceptable MIME types.  By default, this list is */*, 
meaning any product format is acceptable.  By setting this to 
a list of preferred MIME types, product servers learn of the 
users’ desires and may encode products appropriately.  For 
example, setting the list to image/jpeg and image/* means 



the user prefers images in JPEG format but will accept any 
image format if necessary.  Setting it to image/jpeg alone 
means only JPEG format images are acceptable.  When a 
product server cannot satisfy a user’s format request, it may 
return no product even if it otherwise had a match for the 
query. 

Query Server 

A query server provides the point of entry into the OODT 
framework.  The query server  contains the algorithms 
necessary to transform the physical client/server CORBA 
model into the logical P2P model for executing queries and 
gathering results.  It also provides a simplified interface for 
users: they don’t need to know what profile or produ ct 
servers exist and what their object addresses are—they only 
need to access the query server. 

Users can access the query server in a variety of ways 
depending on their sophistication and implementation 
language.  CORBA-capable users can access the query 
server’s CORBA interface directly and call methods to 
search for profiles or products.  Java users may use an API 
class that encapsulates the CORBA communication.  Users 
of other languages may use two different HTTP [14] 
interfaces, built using Java Servlets and servlet-capable web 
servers [15]. 

One HTTP interface is completely generic: it provides the 
profile and product search capabilities of the query server 
through an HTTP GET or POST request.  The user contacts 
the query URL, passing the XML query structure and other 
parameters, and receiving the XML query structure back, 
possibly with encoded results.  This interface requires that 
the client be capable of processing XML documents (and  
base-64 e ncoded data for binary products) in order to 
retrieve results from the query structure. 

The second HTTP interface provides simplified product 
searches only and requires no XML processing capability on 
the client side.  The user again uses an HTTP GET or POST 
request, passing a query string and receives back a single 
product in its system-independent MIME type. 

4. INFORMATION ARCHITECTURE 

Space science instruments and experiments generate science 
data products that are archived in science data systems. 
Effective search and retrieval of data products within and 
across these data systems depend crucially on information 
architectures that are organized on principles known to the 
prospective users and designed to reflect relevant 
relationships.  Well-designed information architectures also 
enable data browsing, data mining, and correlative science. 

Unfortunately, most science data systems were developed 
using differing organizational principles resulting in 
heterogeneous information architectures. This makes the 
search and retrieval of data products across these systems 

difficult since users are required to connect to each 
individual data system and deal with dissimilar and often 
unfamiliar organizing principles. 

Metadata organization and management is a key information 
architectural concept.  Metadata engineering also provides 
key organizational principles and includes data modeling, 
data element definition, and data resource description. Since 
metadata has also been identified as key to enabling 
interoperability between heterogeneous data system, the 
OODT information architecture includes a reference model 
for describing metadata.  

A key feature of the OODT information architecture is the 
use of commonly accepted standards.  We use the ISO/IEC 
11179 [18] specification for the definition of data elements 
in the data element registry.  ISO/IEC 11179 is a framework 
for the specification and standardization of data elements 
and is widely accepted, providing the underlying basis for 
data element definition and classification.  The specification 
defines four data element attribute categories: identification, 
definitional, representational, and administrative.  In 
addition, we’ve adopted use of the Dublin Core [17] 
element set, a content description model that has received 
wide-spread acceptance across the electronic information 
community.  These elements were designed to facilitate the 
discovery of electronic resources across the Internet and 
include content, property,  and instantiation resource 
attributes. 

We’ve also adopted the concept of the Object Identifier 
(OID) to provide persistent, unique, and simple object 
identification [18]. Defined by the International 
Telecommunications Union and adopted by Internet SNMP 
and LDAP communities, an OID is persistent once assigned 
and its lifetime is infinite. OIDs are unique because they 
follow a distributed management model like the Internet 
Domain Name System, and are simple because they are a 
series of short integers.  It’s also possible to trace any level 
of an OID back to its owner.  

An OODT information architectural principle suggests three 
phases in the development of metadata for the purpose of 
enabling heterogeneous data system interoperability.  The 
first phase is simply the identification of individual data 
system data dictionaries.  Data dictionaries describe the 
elements and associated values used to describe the 
information or data model associated with a data system. 

The second phase of development involves the transforming 
of the data dictionary’s native representation into a standard 
representation based on the ISO/IEC 11179 specification. 
This standard representation is used to describe each data 
element identified in the dictionary.  The following XML 
fragment illustrates the use of XML to define a space 
science data element.  

<?xml�version="1.0"?>�
<schema>�



...�
� <dataElement>�
� � <name>TARGET_NAME</name>�
� � <identifier>1.3.6.1.4.1.1306.2.10.997�
� � </identifer>�
� � <version>2001</version>�
� � <registrationAuthority>NASA.PDS�
� � </registrationAuthority>�
� � <context>Metadata.DataDictionary.Element�
� � </context>�
� � <definition>Identifies�a�target,�which�may�be�
� � � a�planet,�satellite,�ring,�region,�feature,�
� � � asteroid�or�comet.��See�TARGET_TYPE.�
� � </definition>�
� � <dataType>CHARACTER</dataType>�
� � <format>N/A</format>�
� � <unit>none</unit>�
� � <maxSize>30</maxSize>�
� � <obligation>Mandatory</obligation>�
� � <maxOccurrence>1</maxOccurrence>�
� </dataElement>�
...�
</schema>�

The third phase of metadata development inv olves the 
manual analysis and comparison of data elements both 
within and across domains to identify or derive Common 
Data Elements (CDEs).  This typically involves identifying 
similar element names or definitions, determining core 
concepts, possibly gener alizing the concept, and 
determining key names and aliases.  The resultant 
discipline, application, or enterprise specific CDEs enable 
higher levels of data system interoperability once adopted 
by individual data systems. 

The OODT profile server described in Section 3 manages 
metadata descriptions of resources across and within 
distributed data systems.  The metadata descriptions are 
created from and validated against the metadata registry and 
are packaged as “profiles.”  As mentioned before, resources 
can be almost anything including subsystems, services, data 
volumes, data collections, or data items.  Examples of space 
science data items include images, spectra, and documents. 

The OODT profile is an XML document that uses domain 
metadata to describe the data resources that exist within a 
data system.  Profiles promote interoperability between data 
systems by providing a common structure and interchange 
language within which to describe system resources.  The 
primary purpose of an OODT profile is to provide a 
resource description that is sufficient for a query manager to 
determine if the resource can resolve a query.  This 
subsequently limits the number of resources that will have 
to consider the query.  For example, within space sciences, a 
query for images of Jupiter should not have to be handled by 
the resource that maintains the Mars Global Surveyor 
images of Mars.  A profile can be defined as a proper subset 
of the metadata that describes a resource and which is 

sufficient to determine whether the resource could resolve a 
query. 

In addition to using XML as the interpeer exchange format, 
we also use XML as the common language for the OODT 
profiles. The advantages of XML include (1)  superior 
expressiveness to HTML by allowing information-structure 
specifications, (2) simplicity compared to SGML in use and 
syntax, (3)  wide acceptance as an Electronic Data 
Interchange (EDI) standard, and (4) the most compelling, its 
flexibility.  The flexibility of XML allowed us to develop a 
generic structure for managing resource descriptions from 
any science domain. 

The Document Type Definition (DTD) specification listed 
below illustrates the basic components of the resource 
profile.  The DTD specification has three parts: the profile 
attributes, resource attributes, and the profile elements. 
We’re using a DTD specification since the technology is 
widely supported.  We are considering XML-Schema since 
it is now a recommendation of the World Wide Web 
Consortium (W3C). 

<!ELEMENT�profiles�(profile*)>�
<!ELEMENT�profile�(profAttributes,�resAttributes,�
� profElement*)>�
<!ELEMENT�profAttributes�(profId,�profVersion?,�
� profType,�profStatusId,�profSecurityType?,�
� profParentId?,�profChildId*,�profRegAuthority?,�
� profRevisionNote*,�profDataDictId?)>�
<!ELEMENT�resAttributes�(Identifier,�Title?,�
� Format*,�Description?,�Creator*,�Subject*,�
� Publisher*,�Contributor*,�Date*,�Type*,�Source*,�
� Language*,�Relation*,�Coverage*,�Rights*,�
� resContext+,�resAggregation?,�resClass,�
� resLocation*)>�
<!ELEMENT�profElement�(elemId?,�elemName,�
� elemDesc,�elemType?,�elemUnit?,�elemEnumFlag*,�
� (elemValue*�|�(elemMinValue,�elemMaxValue)),�
� elemSynonym*,�elemObligation?,�
� elemMaxOccurrence?,�elemComment?)>�

The profAttributes section  of the XML document contains 
the attributes of the profile itself.  The profId attribute 
provides a system-wide unique identifier for a profile 
instance and is currently being implemented as an OID.  The 
profTitle and profDesc attributes provide descriptions of the 
profile where profTitle is more terse  and appropriate for 
more frequent display in user interfaces.  The profType 
attribute, defined further below, identifies the profile type. 
The profDataDictId attribute provides the identifier of the 
controlling domain data dictionary.  The profChildId 
attributes allow for the creation of a profile hierarchy. 

The resAttributes section of the XML document generically 
describes the resource using the 15 recommended elements 
of the Dublin Core initiative.  A description of this initiative 
and the elements is available at http://purl.org/DC/. We’ve 
added three additional resource attributes. The resContext 



element identifies the application environment or discipline 
within which the resource originates and is derived from a 
taxonomy of science disciplines. For e xample, 
NASA.PDS.Geoscience is used to indicate that the resource 
is associated with the Geoscience node of the Planetary Data 
System.   The resLocation provides the location of the 
resource, typically represented as a URL.  Finally, the 
resClass element identifies the resource within a taxonomy 
of resource types. Examples values are 
system.productServer, application.interface, data.granule 
and data.dataSet. 

The profile element section of the XML document describes 
the data content that the resource manages using domain 
specific metadata.  For example, the Planetary Data System 
(PDS) maintains an inventory of all science data sets that 
have been archived in the system.  Within this inventory, the 
data sets are indexed on instrument and target body 
identifiers involved in the observation.  These elements 
would be included in a profile’s element section as 
illustrated below and indicate that this data set can resolve 
queries that have PDS instrument and target identifiers as 
query constraints. 

As illustrated in  the XML fragment below, each data 
element is defined using the meta -attributes elemId, 
elemName, and elemValue. These meta -attributes are 
consistent with those in the OODT data element registry to 
allow for reference and validation.  

<profile>�
� <profAttributes>�
� � <profId>1.2.3.4...</profId>�
� � <profType>PROFILE</profType>�
� � <profStatusId>ACTIVE</profStatusId>�
� </profAttributes>�
� <resAttributes>�
� � <Identifier>1.2.3.5...</Identifer>�
� � <Title>Viking�Orbiter�1...</Title>�
� � <Format>text/html</Format>�
� � <Language>en</Language>�
� � <resContext>NASA.PDS</resContext>�
� � <resClass>data.dataset</resClass>�
� � <resLocation>http://pdscat...</resLocation>�
� </resAttributes>�
� <profElement>�
� � <elemId>1.2.3.6...</elemId>�
� � <elemName>INSTRUMENT_N...</elemName>�
� � <elemType>ENUMERATION</elemType>�
� � <elemValue>VISUAL�IMAG...</elemValue>�
� </profElement>�
� <profElement>�
� � <elemId>1.2.3.7...</elemId>�
� � <elemName>TARGET_NAME</elemName>�
� � <elemType>ENUMERATION</elemType>�
� � <elemValue>MARS</elemValue>�
� � <elemValue>PHOBOS</elemValue>�
� � <elemSynonym>ADS.OBJECT_ID</elemSynonym>�

� </profElement>�
</profile>�

The final phase of profile development involves 
implementing instances of profiles for specific domain 
resources.  As is evident, the success of the distributed 
resource location concept is dependent on the existence of 
domain metadata captured in repositories such as data 
(element) dictionaries.  Within such privileged domains, the 
registration of resources with the service is readily 
accomplished by extracting the necessary metadata from the 
domain’s metadata repository, creating the resource profile, 
and then registering the profile with a profile server.  This 
enables the successful location of resources within a 
domain. 

Supporting interoperability between resources from 
different domains is st rongly dependent on metadata 
compatibility, or how well the metadata spans the domains. 
For example, two related domains such as planetary science 
and astrophysics both associate one or more target bodies 
with most data products.  However, unless the same 
identifiers are used for a specific target or a mapping 
between identifiers is determined, the attribute will not 
support resource location much less interoperability across 
the domains.  In fact, as more sophisticated 
interoperability—such as data transfo rmation and 
correlation—are requested, deeper levels of metadata 
compatibility will be required.  For example, once a target 
body is identified, sufficient metadata must be available for 
coordinate system conversion. 

The development of cross-discipline metadata is typically an 
arduous manual effort performed by teams of domain 
experts. However there are research efforts focusing on  
automatic methods for identifying common metadata across 
domains.  

5. APPLICATION TO THE PLANETARY DATA 

SYSTEM 

The Planetary Data System (PDS) manages and archives 
planetary science data for NASA’s Office of Space Science. 
In existence since the late 1980s, the PDS developed—early 
on—a standards architecture that included a formal 
enterprise model, a means for collecting and associating 
metadata with science data products, and a peer review 
process for ensuring data and metadata validity.  This active 
science data archive currently has over five terabytes of data 
stored and distributed on CD and DVD media.  The 
standards architecture has proven to be the single most 
important element in maintaining consistency across the 
various science domains represented in the planetary science 
community and the six geographically distributed science 
discipline nodes of the PDS. 

The primary focus of the PDS to-date has been the creation 
of a long-term science data archive on physical media.  PDS 
provides community access to the data products primarily 



through the appropriate distributed science discipline node. 
For example, the PDS imaging node is r esponsible for 
imaging data products and builds search and retrieval 
interfaces for specific data sets as requested by their users.  
Similarly, other discipline nodes are responsible for the data 
within their domain and build search and retrieval interfaces 
as needed. The guiding philosophy was that scientists 
working in the planetary science community would know 
what node or interface could provide the data of interest.  
This development approach resulted in heterogeneous 
search and retrieval systems and as the number of data sets 
increased, an exponential increase in the number of point-to-
point interfaces. 

The advent of the Web, a huge increase in potential users, 
and the large data volumes proposed for future solar system 
explorations missions has re-focused attention on distributed 
data management issues.  These include a need for an 
integrated view of all the data in the archive, an integrated 
spatial/temporal access across the entire archive, and 
infrastructure support for science analysis and knowledge 
discovery.  

In 1998, the PDS developed the prototype Distributed 
Inventory System (DIS) to inventory the resources across 
the PDS.  This prototype took advantage of the wealth of 
metadata in the archive to described both data and non-data 
resources.  The DIS described each resource in a label using 
pertinent metadata from the archive. The DIS uses t he 
Object Description Language (ODL), a keyword/value 
language, to encode the metadata.  URL/FTP links were 
included for all online resources.  The labels were collected 
into a simple database.  DIS engineers developed a simple 
Perl CGI-script search engine to search the label database. 
Results are provided as an HTML document for display in a 
browser. 

This prototype was a success and provided the PDS with 
several lessons.  First, it identified the PDS metadata as the 
key to the integration problem since it was sufficient to 
identify and describe both data and non -data resources, 
provided the necessary search attributes for finding 
resources, and was sufficient to determine whether a query 
could be resolved by the resource.  In addition the prototype 
showed that the increase of point-to-point interfaces could 
be reduced to a linear function.  The prototype also made 
certain limitations obvious.  These were that ODL was not a 
universal interchange language, resource heterogeneity was 
still visible to the user, navigation and access was limited to 
HTTP links, and node data system interoperability is not 
supported.  

In late 1999, PDS and OODT staff met to discuss the  
applicability of OODT’s data management technology to 
PDS issues and PDS’s information architectural concepts 
(data modeling and metadata standards) to OODT goals. 
One result of this collaboration is called the Next 
Generation DIS. The goals of this new s ystem includes 
adopting a common interchange language (XML), hiding 

heterogeneity using encapsulation, using message passing 
protocol in a component based system architecture, 
maintaining system location independence, and providing a 
scaleable and extensible solution.  Figure 7 illustrates the 
proposed system which will be prototyped using the Mars 
Global Surveyor (MGS) science data archives. 

 

Figure 5 - Next Generation DIS—Mars Global Surveyor 
Prototype 

OODT profiles will replace the ODL resource labels of the 
initial DIS system.  A portion of an OODT resource profile 
for the Viking Mars Imaging Digital Image Model data set 
(Mars Mosaic created using original Viking images) is 
illustrated below. This profile provides sufficient 
information for a query handler to determine whether the 
data set could resolve an incoming query.  In addition, this 
profile could also be easily modified to describe a product 
server that serves individual images by simply changing the 
resource description since the metadata encoded in the 
profile element section is applicable to both resources 

<profile>�
� <profAttributes>�
� � <profId>1.3.6.1.4.1.1306.2.102</profId>�
� � <profType>PROFILE</profType>�
� </profAttributes>�
� <resAttributes>�
� � <Identifier>VO1/VO2-M-VIS-5-DIM-V1.0�
� � </Identifer>�
� � <Title>VO1/VO2_MARS_VISUAL</Title>�
� � <Format>text/html</Format>�
� � <resContext>NASA.PDS</resContext>�
� � <resClass>data.dataSet</resClass>�
� � <resLocation>http://pdsproto.jpl.nasa.gov...�
� � </resLocation>�
� </resAttributes>�
� <profElement>�
� � <elemName>TARGET_NAME</elemName>�
� � <elemType>ENUMERATION</elemType>�
� � <elemValue>MARS</elemValue>�
� </profElement>�
� <profElement>�
� � <elemName>MAXIMUM_LATITUDE</elemName>�
� � <elemType>REAL</elemType>�



� � <elemMinValue>-87.50000</elemMinValue>�
� � <elemMaxValue>90.00000</elemMaxValue>�
� </profElement>�
</profile>�

The initial goal of the prototype will be to support the 
creation of a data coverage plot as illustrated in Figure 6.  In 
this plot, indicators showing the geographical location of 
MGS imaging (red), altimeter (blue), and thermal emission 
spectrometer (green) data products are overlaid onto a Mars 
image mosaic from the Viking Mars image data set.  Four 
data sets at several geographically distributed data systems 
will be accessed to produce the plot. 

 

Figure 6 - Mars Global Surveyor Coverage Plot 

6. APPLICATION TO THE DEEP SPACE NETWORK 

Established in 1958, NASA’s Deep Space Network (DSN) 
is a global network of antennas that communicate with 
spacecraft.  The DSN facilitates interplanetary spacecraft 
missions and several Earth-orbiting missions.  It is currently 
made up of three facilities across the world: at Goldstone, in 
California's Mojave Desert; near Madrid, Spain; and near 
Canberra, Australia3.  

The DSN plays an integral role in the success of missions. 
Amongst a few of its duties are: acquiring telemetry data 
from spacecraft, transmitting commands to spacecraft, 
gathering science data, and tracking spacecraft position and 
velocity3.  However, these tasks are hindered by the 
distributed and heterogeneous nature of the DSN.  These 
obstacles complicate data sharing and mining, data 
modeling, and the creation of a common information 
architecture.  

The OODT framework directly addresses the key issues of 
the DSN.  OODT’s emphasis on implementation of both a 
component framework along with the identification of local 
data dictionaries and models for each system provides an 
excellent vehicle for establishing an information 
architecture for the DSN. In addition, OODT’s design 
principle of hiding local system interfaces through data 
abstraction allows for the implementation of a common 
information architecture. OODT allows for data elements 

                                                           

3 http://deepspace.jpl.nasa.gov/dsn/ 

tied to local information systems to be translated into 
common data elements described for the entire DSN.  Its 
extensible architecture provides the DSN with what could 
be considered “plug and play” data management.  I n 
addition, this architecture provides a means by which data 
and local agents can be located, retrieved or executed on any 
number of systems and machines using a common XML 
exchange structure as defined in section 3.  This distributed 
computing model fits very nicely into the overall DSN 
architecture. 

As proof of concept, we created and launched a prototype 
for the DSN.  The first phase of this prototype involved 
creating the “Mission and Ground Asset Database.” This 
database provides a basic description of missions, ground 
stations, spacecraft, and ground antennae.  It was created to 
provide an online reference of key mission parameters and 
values and to provide a long term vision for tying together 
capabilities of ground stations around the world.  Figure 7 
shows a high level entity/relationship diagram of the 
database.  This model will allow engineers to discover 
possible constraints of the current ground systems and or 
missions. In addition, the datab ase could be used to 
understand how to optimize workflows in and around 
ground stations.   

 

Figure 7 - ER Diagram of Mission and Ground Asset 
Database 

The implementation of the database in conjunction with the 
OODT architecture al lowed for the ground station 
information captured to be published and exchanged over 
the Internet using an XML interface. Not only is the 
database now searchable with in the architecture, it can be 
discovered by other systems by passing the XML structure 
to the OODT system.  OODT used a product server to query 
and return the results of the database using the OODT XML 
query definition.  The product server was defined in a 
profile which describes the missions and ground stations 
that are maintained by the database.  This allows for a query 
of mission information to first locate a database which 
contains the desired information. Looking forward, this will 
allow for multiple databases to be tied together from 
disparate ground asset databases around the world if a 
standard XML structure can be defined for querying that 
data. An excerpt of the XML structure from the profile can 
be seen below. 



<profile>�
� <profAttributes>�
� � <profId>1.3.6.1.4.1.1306.5.11</profId>�
���<profVersion>1.0</profVerision�
� � <profType>PROFILE</profType>�
� </profAttributes>�
� <resAttributes>�
� <Identifier>JPL.TMOD.PRODUCT_SERVER</Identifer>�
� � <Title>Mission�and�Ground�Asset�DB</Title>�
� � <Format>text/html</Format>�
� � <resContext>NASA.JPL.TMOD</resContext>�
� � <resClass>application.interface</resClass>�
� � <resLocation>http://velcro.jpl.nasa.gov...�
� � </resLocation>�
� </resAttributes>�
� <profElement>�
� � <elemName>MISSION_NAME</elemName>�
� � <elemType>ENUMERATION</elemType>�
� � <elemValue>Cassini</elemValue>�
� � <elemValue>Galileo</elemValue>�
� </profElement>�
� <profElement>�
� � <elemName>GROUND_STATION_LOCATION</elemName>�
� � <elemType>ENUMERATION</elemType>�
� � <elemValue>Goldstone</elemValue>�
� � <elemValue>Canberra</elemValue>�
� </profElement>�
</profile>�

JPL’s Interplanetary Network and Information Systems 
Standards Program has initiated several efforts to explore 
the use of XML as a means to establish common data 
definition and access mechanisms for a reference mission 
information architecture.  This architecture is being worked 
with support from the Consultative Committee on Space 
Data Systems through an XML Working Group, and the 
Object Management Group’s Space Domain Task Force.  
The goal is to establish world -wide mechanisms for 
exchanging mission information as well as supporting the 
use of XML throughout the mission life cycle. OODT is 
continuing to work on supporting this vision and is now 
working to allow other databases to be queried using 
OODT’s XML components. XML and OODT play a critical 
role in helping both the DSN and other efforts from NASA 
and other agencies establish architectures for the capture, 
location, and exchange of critical mission information 
across the boundaries of distributed and heterogeneous 
systems.   

7. FUTURE 

We've realized the physical deployment of the current 
OODT framework using CORBA as the network substrate.  
CORBA's object model represents servers as interfaces with 
methods, while clients call those methods.  The logical 
deployment, however, is different.  It is a set of 
interconnected peers that pass around a query object.  Each 
peer examines the query and may add any results that are 
relevant.  The query service, described in Section 3, 
simulates this P2P architecture by crawling the network of 

servers on behalf of the user and maintaining the query 
object. 

By replacing the CORBA substrate with a P2P substrate, we 
can better leverage P2P features.  For example, the query 
service completely disappears because its role is redundant 
in a P2P architecture.  In P2P, there are no clients or servers, 
just peers.  Peers pu blish service advertisements that 
describe the functions they can carry out.  Profile peers 
would publish advertisements for resource location services.  
Product peers would publish advertisements for data 
retrieval services.  In this model, a user would “ inject” a 
query into a system.  Service advertisements would indicate 
what peers would be capable of handling the query.  Results 
would come back to the user's peer asynchronously; and the 
user can terminate the query as soon as s/he receives the 
desired results. 

Furthermore, a P2P substrate addresses scalability.  In the 
CORBA model, the query service must wait its turn when 
running a query on behalf of a user at an overburdened 
profile or product server.  In the peer model, a popular data 
center can be leveraged by providing more than one peer at 
the center to handle requests.  These peers may be located 
on multiple CPUs and network interfaces to maximize 
concurrency and availability.  In essence, a system 
administrator can speed up a site by starting more peers. 

In addition, we are focusing on developing new components 
in the architecture to manage metadata by creating a 
metadata service.  The purpose of the metadata service is to 
provide a series of registries that allow for the management 
of data dictionaries, data elements and resource descriptions. 
This service will be designed around three major 
capabilities: capturing data dictionary schemas, capturing 
data elements and capturing resource definitions for data 
systems, data sets, and data products.  We see this as critical 
to the validation of profiles for describing system resources. 

OODT is also continuing to work across disciplines.  We 
are working with the National Institutes of Health to explore 
the use of OODT for capturing and sharing research 
produced in disparate research laboratories and are working 
with JPL Institutional Computing and Information Services 
program (ICIS) to explore infusion of data management 
services and information architectures for describing, 
building and operating distributed data systems at both the 
institutional and project level.   

The success of OODT has in many ways been driven by the 
desire to share information.  While there are many technical, 
social and legal issues related to data sharing and 
interoperability, the prospect of deriving new knowledge 
through data correlation is immensely high.  In addition, 
providing standard data management frameworks for 
building information management systems that can 
dynamically plug into larger information management 
systems is certainly a grand vision.  One thing is clear:  
science and engineering plan to continue to produce large 



volumes of data that are orders of magnitude larger than 
those already captured.  The need to better capture, 
organize, describe, reuse and share information within and 
across disciplines will continue to be key information 
management needs and research topics in the foreseeable 
future. 
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